Introducing Egret-1

by Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider · Apr 30, 2025

Today, we're releasing Egret-1, a family of open-source NNPs for bioorganic simulation.

Visual abstract showcasing Egret-1's capabilities in bioorganic simulation

Over the past two years of building Rowan, we've probably talked to over a thousand chemists about how they wish they could be using computation. One theme that stands out is that scientists want to be able to trust their results. Historically, there's been no good way to quickly run simulations that weren't largely incorrect—low-cost computational methods have been around forever, but they often behave more like random-number generators than trusted scientific tools.

In theory, neural network potentials (NNPs) can enable fast and accurate chemical simulation, but previous generations of NNPs haven't been as reliable as the legacy quantum-mechanics-based algorithms that chemists are used to—so the simulations are very fast, but chemists still have to double-check the results with quantum chemistry.

Egret-1 changes this. On many relevant benchmarks, our models match or exceed the accuracy of quantum-mechanics-based simulations while running orders-of-magnitude faster. With Egret-1, scientists can quickly get trustworthy results from computation to guide their work.

Training on purpose-built datasets

The Egret-1 family of NNPs comprises three pretrained models built for different use cases:

We've benchmarked the Egret-1 models on a wide variety of common simulation tasks, and found that in many cases they exceed the accuracy of conventional quantum-chemical methods—meaning that Egret-1 is both faster and more accurate than the previous state-of-the-art. (For a full description of our training and benchmarking work, we've published a preprint on arXiv.)

Here's three particularly exciting results—in all cases, lower numbers are better.

Egret-1's performance on the ROT34 rotational constant benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the ROT34 rotational constant benchmark

Egret-1's performance on the Folmsbee conformer-ranking benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the Folmsbee conformer-ranking benchmark

Egret-1's performance on the Wiggle150 strained-conformer benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the Wiggle150 strained-conformer benchmark

Chemical accuracy hundreds of times faster

Even on CPUs, the Egret-1 models are far faster than quantum chemistry. A single energy calculation on the macrocyclic drug rapamycin takes almost 15 minutes with a low-cost quantum-chemical method, while the same calculation takes less than two seconds with Egret-1:

Egret-1 is much faster than DFT at computing the energy of a macrocyclic molecule, rapamycin

For further speed accelerations, the Egret-1 models can also be run on CUDA-enabled GPUs. On an NVIDIA H100, Egret-1 can optimize an all-atom structure of insulin in less than three minutes:

A small protein, human insulin, optimized with the Egret-1 model

How to use Egret-1

We're releasing the Egret-1 models under an open-source MIT license to make it easy to build atop our work. The compiled models can be downloaded from GitHub, and are compatible with the Atomic Simulation Environment. If you're developing with the Egret-1 models, be sure to join the Rowan Discord server to connect with our team.

You can also use Egret-1 through the Rowan computational-chemistry platform. The Egret-1 models can be used for conformer searches, 1D- and 2D-scans, transition states, and more. Make a Rowan account to start running Egret-1 calculations for free today!

What's next

These models have some limitations. Egret-1 is limited to simulating neutral closed-shell structures, supports only a subset of the periodic table, fails to fully learn complex non-covalent interactions, and cannot yet account for solvent effects. We also expect that real-world testing of Egret-1 will find lots of strange and incorrect behaviors we haven't found yet. We plan to address all these limitations with future generations of models, and continue training, scaling and improving general-purpose models for accurate simulation of molecules and materials.

Banner background image

What to Read Next

Modeling Thia-Michael Reactions

Modeling Thia-Michael Reactions

In which the addition of a thiolate to an enone proves to be unexpectedly difficult to model.
Jul 25, 2025 · Corin Wagen
API v2, New BDE Methods, MCP, And More

API v2, New BDE Methods, MCP, And More

new API philosophy; streamlined interfaces for workflows; using NNPs and g-xTB to predict bond strength; an MCP server; .sdf files; benchmarking protein–ligand interactions; Diels–Alder visualizations
Jul 21, 2025 · Spencer Schneider, Corin Wagen, Ari Wagen, Jonathon Vandezande, Ishaan Ganti, and Isaiah Sippel
ExpBDE54: A Slim Experimental Benchmark for Exploring the Pareto Frontier of Bond-Dissociation-Enthalpy-Prediction Methods

ExpBDE54: A Slim Experimental Benchmark for Exploring the Pareto Frontier of Bond-Dissociation-Enthalpy-Prediction Methods

ExpBDE54 is a benchmark dataset of experimental homolytic bond-dissociation enthalpies (BDEs) for 54 small molecules, used for benchmarking DFT, semiempirical methods, and NNPs.
Jul 17, 2025 · Jonathon E. Vandezande, Corin C. Wagen
Benchmarking Protein–Ligand Interaction Energy

Benchmarking Protein–Ligand Interaction Energy

How new low-cost computational methods perform on the PLA15 benchmark.
Jul 11, 2025 · Ishaan Ganti
Efficient Black-Box Prediction of Hydrogen-Bond-Donor and Acceptor Strength

Efficient Black-Box Prediction of Hydrogen-Bond-Donor and Acceptor Strength

Here, we report a robust black-box workflow for predicting site-specific hydrogen-bond basicity and acidity in organic molecules with minimal computational cost.
Jul 1, 2025 · Corin C. Wagen
Tracking Boltz-2 Benchmarks

Tracking Boltz-2 Benchmarks

Tracking the community's response to the new Boltz-2 model, plus some notes about Chai-2.
Jul 1, 2025 · Corin Wagen
g-xTB, Credit Usage, & More

g-xTB, Credit Usage, & More

the new g-xTB model from Grimme and co-workers; an easy visual overview of credit usage; better credit handling for organizations; bulk PDB download; a new collapsible JSON viewer
Jun 27, 2025 · Jonathon Vandezande, Ari Wagen, Spencer Schneider, and Corin Wagen
Representing Local Protein Environments With Atomistic Foundation Models

Representing Local Protein Environments With Atomistic Foundation Models

A guest post about how to use NNP embeddings for other prediction tasks.
Jun 20, 2025 · Meital Bojan and Sanketh Vedula
Co-Folding Updates

Co-Folding Updates

Boltz-2 FAQ and launch event recap; new visuals for co-folding workflows; new submission options; PDB bugfixes; new credit-management tools
Jun 12, 2025 · Ari Wagen, Spencer Schneider, and Corin Wagen
The Boltz-2 FAQ

The Boltz-2 FAQ

Questions and answers about the Boltz-2 biomolecular foundation model.
Jun 9, 2025 · Corin Wagen and Ari Wagen